Nonlinear reflection of internal gravity wave onto a slope
Combining lab experiments, 2D and 3D simulations
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Introduction and objective

The nonlinear reflection of internal waves from a sloping boundary 1s studied using laboratory ex-
periments (carried out on the Coriolis Platform at Grenoble) and, 2D and 3D numerical simulations
(performed using a non-hydrostatic code). The interaction of the incident and reflected waves pro-
duce, an 1rreversible wave induced mean flow which grows in time and is localised 1n the interacting
region. The growth and energetics of this wave-induced mean flow is studied.

Experimental setup

Schematic of the experimental setup
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Figure 1: Schematic of the experiment at Coriolis platform, LEGI. In the experiment, a plane wave is produced using
a wave generator and 1s made to reflect normally on a sloping bottom in a uniformly stratified fluid. Velocity fields are
obtained by PIV using a horizontal and a vertical laser sheet.

Numerical simulations done using a non-hydrostatic model mimick the lab experiment, with a resolution of 1cm in
horizontal and 0.5cm in vertical direction. The boundary condition on the slope is free-slip.

Horizontal velocity field
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Figure 2: Zonal velocity fields in the vertical section (y = 0 cm) filtered over 17-20 wave periods at the forcing frequency

(a, b, ¢); and Eulerian mean currents (d, e, f).

Wave induced mean flow

The wave induced mean flow 1n lab experiments and 3D simulation compare well, while 1n 2D sim-
ulation, the theoretically predicted spatially periodic mean flow 1s found. The evolution of kinetic
energy averaged in the interaction region for different harmonics and the mean flow 1s shown in
Figure 3.

Energy partition in the interaction region
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Figure 3: Kinetic energy partition in the mean flow and different harmonics in the interaction region.

The KE associated with the mean flow grows strongly and exceed that of primary wave in the lab
experiment and 3D simulation, while 1t 1s weak 1n 2D simulation. The mean flow 1n lab and 3D sim-
ulation depend primarily on nonlinear and dissipative effects, and therefore it is cumulative in time
and 1rreversible. Hence, there should be an associated Lagrangian mean flow 1n this case.

Mean flow [m s'l] in the horizontal section, z = -357 cm
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Figure 4: Mean flow in the horizontal section, z = -57 cm.

The wave induced mean flow in the lab experiment and 3D simulation also recirculate in the hori-
zontal plain, generating a strong vertical vorticity field.

Potential vorticity in the horizontal plane, z =-57 cm
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Figure 5: Potential vorticity in the horizontal section, z = -57 cm from the 3D simulation.
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Mean current acceleration theory

The acceleration of the mean flow due to the interaction of incident and reflected wave can be calcu-
lated analytically, from substituting viscous linear wave solutions to the Reynolds stress term in the
momentum equation.

M. Leclair derived the expression for mean current acceleration during the reflection. According
to his theory, the acceleration term constitutes of Ag, acceleration of a purely Eulerian mean flow
(without net mass transport) associated with 2D case, and A, acceleration of a non reversible mean
flow which 1s proportional to the kinematic viscosity.
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Figure 6: Comparison of the mean current acceleration from theory, simulation and lab experiments, for time 10 T (a);
Evolution of the mean current acceleration in the interaction region with time (b).

The acceleration 1s dominated by the reflected wave and 1s maximum in the interaction region. The
theoretical mean current acceleration and the observed acceleration in lab and simulation, are in the
same order of magnitude, even though the theoretical prediction over-estimates the value, pointing
towards a scope for improvement.

Conclusions

e Internal waves reflection produces a strong irreversible mean flow, caused by the combined ef-
fect of nonlinear and viscous terms. This 1s different from the spatially periodic 2D mean flow
predicted by theory before.

e The strong irreversible 3D mean flow refracts the wave field in the interaction region, enhancing
the focusing of the reflected wave, finally leading to its breaking.

e The 3D mean flow recirculates 1in the horizontal plane producing a dipole vortex structure.

e The acceleration of the mean current 1s due to the combined effect of nonlinearity and viscosity,
and 1s dominated by the reflected wave and 1s proportional to the viscosity.

Forthcoming Research

e Energy budget in 3D simulations to quantify the transfer of energy from the primary wave to higher harmonics, mean flow and small scale
processes.

e Improve the theoretical model for mean acceleration. Test the theory for different amplitudes of incident wave.
e Higher resolution simulations; study boundary effects.

e Effects of rotation, boundary layer.
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