1. Schönau, M.C., L. Hiron, J. Ragland, K.J. Raja, J. Skitka, M.S. Solano, X. Xu, B.K. Arbic, M.C. Buijsman, E.P. Chassignet, E. Coelho, R.W. Helber, W. Peria, J.F. Shriver, J.E. Summers, K.L. Verlinden, and A.J. Wallcraft. (2025). How do tides affect underwater acoustic propagation? A collaborative approach to improve internal wave modeling at basin to global scales. Oceanography 38(2):24–35 (pdf)
  2. L. Hiron, M. C. Schönau, K. J. Raja, E. P. Chassignet, M. C. Buijsman, B. K. Arbic, A. Bozec, E. F. Coelho, M. S. Solano, (2025). The Influence of Vertical Resolution on Internal Tide Energetics and Subsequent Effects on Underwater Acoustic Propagation. Journal of Advances in Modeling Earth Systems, 17, e2024MS004389 (pdf)
  3. Raja, K.J., Buijsman, M.C., Bozec, A., Helber, R.W., Shriver, J.F., Wallcraft, A., Chassignet, E.P. and Arbic, B.K., (2024). Spurious internal wave generation during data assimilation in eddy resolving ocean model simulations. Ocean Modelling, 188, p.102340. (pdf)
  4. Raja, K. J., Buijsman, M. C., Shriver, J. F., Arbic, B. K., & Siyanbola, O. (2022). Near-inertial wave energetics modulated by background flows in a global model simulation. Journal of Physical Oceanography, 52(5), 823-840. (pdf)
  5. Leclair, M., Raja, K., & Staquet, C. (2020). Nonlinear reflection of a two-dimensional finite-width internal gravity wave on a slope. Journal of Fluid Mechanics, 887. (pdf)
  6. Beckebanze, F., Raja, K. J., & Maas, L. R. M. (2019). Mean flow generation by three-dimensional nonlinear internal wave beams. Journal of Fluid Mechanics, 864, 303-326. (pdf)
  7. J. Sommeria, A. O. Ajayi, K. J. Raja, C. Staquet, S. Viboud, B. Voisin, (2016). Laboratory modelling of momentum transport by internal gravity waves and eddies in the Antarctic circumpolar current. 8th International Symposium on Stratified Flows, 1(1). (pdf)
  1. The modulation of near-inertial wave energy by background flows in global ocean simulations. [Oral presentation – watch in YouTube]. Ocean Sciences Meeting 2022 (PS11).
  2. Near-inertial wave transmission to ocean interior in realistic global ocean simulations. AGU 2020. (iPoster)
  3. Near-inertial wave energetics in realistic simulations with 1-way & 2-way atmospheric coupling. Ocean Sciences Meeting, 2020. (pdf)
  4. Nonlinear reflection of internal gravity wave beam on a slope. Emil Hopfinger Colloquium, LEGI, Grenoble, 2017. (pdf)
  5. Nonlinear reflection of internal gravity wave onto a slope – Combining lab experiments, 2D & 3D simulations. EGU 2016. (pdf)
  1. Spurious internal waves generated during Data Assimilation in ocean model simulations. (2022/09). Department of Scientific Computation, Florida State University. (YouTube)
  2. Near-inertial wave energetics in global HYCOM simulations: Problems with data assimilation and modulation by background flows. (2021/08). Naval Research Laboratory, Stennis space center, MS.
  3. Forcing of mean flows by the reflection of a 3D internal wave beam. (2019/01). Naval Research Laboratory, Stennis space center, MS.
  4. Nonlinear interactions during the reflection of a 3d internal wave beam. (2018/02). Ecole Normale Superieure, Paris, France.
  5. Reflection of a 3D internal wave beam and induced mean flows. (2018/03). Utrecht University, The Netherlands.
  6. Reflection of a 3D internal wave beam and induced mean flows. (2018/03). BTU Cottbus, Germany.

Internal waves and mean flow in the presence of topography (pdf)
PhD Defence presentation on 5th February 2018
(watch in youtube)